a2 United States Patent

US009483265B2

10) Patent No.: US 9,483,265 B2

Wick 45) Date of Patent: Nov. 1, 2016
(54) VECTORIZED LOOKUP OF FLOATING (58) Field of Classification Search
POINT VALUES CPC ... GO6F 9/30036; GO6F 9/30032; GO6F
] L 9/345; GO6F 9/355; GOIL 15/02; GOIL
(71) Applicant: Nuapce Communications, Inc., 15/20; GOIL 15/08; GO1L 15/24; GOIL
Burlington, MA (US) 15/30; GO1L 15/32
(72) Inventor: Justin Vaughn Wick, Acton, MA (US) USPC s 704/2, 9, 231, 243, 277; 712/4
See application file for complete search history.
(73) Assignee: Nuance Communications, Inc.,
Burlington, MA (US
HEHREIon. US) Primary Examiner — Thierry L. Pham
(*) Notice: Subject to any disclaimer, the term of this (74) Attorney, Agent, or Firm — Wolf, Greenfield &
patent is extended or adjusted under 35 Sacks, P.C.
U.S.C. 154(b) by 630 days.
(21) Appl. No.: 13/956,696 &7 ABSTRACT
(22) Filed: Aug. 1, 2013 Systems and techniques disclosed herein include methods
) T for de-quantization of feature vectors used in automatic
(65) Prior Publication Data speech recognition. A SIMD vector processor is used in one
embodiment for efficient vectorized lookup of floating point
US 2015/0039854 Al Feb. 5, 2015 values in conjunction with fMPE processing for increasing
the discriminative power of input signals. These techniques
(51) Int. CL exploit parallelism to effectively reduce the latency of
Go6l" 9/30 (2006.01) speech recognition in a system operating in a high dimen-
GOG6F 9/345 (2006.01) sional feature space. In one embodiment, a bytewise integer
GO6F 9/355 (2006.01) lookup operation effectively performs a floating point or a
(52) US. CL multiple byte lookup.

CPC ... GOGF 9/30036 (2013.01); GOGF 9/30032
(2013.01); GOGF 9/345 (2013.01); GOGF
9/355 (2013.01)

20 Claims, 8 Drawing Sheets

~---105

100 .
¥
110 120
Speech FMPE Engine_ __. . _
Recognition -
Front End ’LLZ'
,,,,,,,,,,,,,,,,, Quantized !
FMPE Matrix
Acoustic Modeli 111 . 122
Language E § DE-QUANTIZATION |
Vocabulary | |

Feature Vectors i ENGINE

Full {Dequantized) FMPE values

Recognized Speech

Vo131

Spe>ech 124 119
Recognition : FMPE
Back End : 121\ TRANSFORMER

T—Enhanced Feature Vectors

U.S. Patent Nov. 1, 2016 Sheet 1 of 8 US 9,483,265 B2

- 105

110 120
| Speech NP
. Recognition

i Front End : =
oo eeaeed i Quantized

- FMPE Matrix

Acoustic Modeﬂ 111, 122
Language N, . DE-QUANTIZATION |

Vocabulary Featire Vectors ENGINE

Full (Dequantized) FMPE values

Speech 3 124 119
Recognition jat FMPE
Back End : 121‘ TRANSFORMER

LEnhanced Feature Vectors
Recognized Speech i

FIG. 1 Lo

U.S. Patent Nov. 1, 2016 Sheet 2 of 8 US 9,483,265 B2

2528 .

. FIG. 2

! 250
252n ... i

Engine
"""""""""""""""""""" 214

2223

220

212

210<

U.S. Patent

Nov. 1, 2016

Sheet 3 of 8

US 9,483,265 B2

202a ...
222a
Y S o e et
3 3 3 3
i3 2 i1 io
0 32 a2
214 4 Vector
Addition
- Operation
| 12 8 4 0 ‘
|+base address | +base address | +base address +base address
0 128~ 216
) w
J
12+1i3 8+1i, 4+ 0+1ig

15+base address
;/' .

7 +base address

| 3+base address

o " base address, .

% 2 g,a " . aO b\O\ CO « dO 3

Vector
TBL e 4 ar~. | by C1 b dy 7

Operation 210 | .
8 & by c; Tir dp 11
120 & bs e A I

252a .

FIG. 3

U.S. Patent Nov. 1, 2016 Sheet 4 of 8 US 9,483,265 B2

400 - SETUP

LOAD FIRST SET OF DATA ELEMENTS INTO LOOKUP TABLE
1. call Load_lL ookup_Table{ %[pTable])

LOAD VECTOR REGISTER WITH TRANSLATION CONSTANT
2. vid TRANSLATION_CONSTANT, {R1}

LOAD LOOKUP TABLE FROM MEMORY TO REGISTER
3. vid %[pTable], { RTABLE }

1
410 — LOAD AND DEQUANTIZE

LOAD REPLICATED QUANTIZED VALUES INTO INDEX REGISTER
4, vid %[anIues], {RINDEX}

VECTOR ADD TRANSLATION CONSTANT AND INDEX REGISTER
5. vadd {R1}, {Rinpex}s {Rinoext

PERFORM LOOKUP USING VECTOR PERMUTE
6. wvtbl {Rinoex}; {Reaiehs {Rseaments}

20 — TRANSFORMATION

INVOKE VECTOR INSTRUCTION OPERATING ON FLOATING POINT CONSTANT
7. vop {Rsecments) ...

FIG. 4

U.S. Patent Nov. 1, 2016 Sheet 5 of 8 US 9,483,265 B2

500

510
LOAD A FIRST SET OF DATA ELEMENTS INTO A LOOKUP TABLE HAVING A
BASE ADDRESS;

i

520
LOAD A VECTOR REGISTER WITH A TRANSLATION CONSTANT
CORRESPONDING TO THE ARRANGEMENT OF THE FIRST SET OF DATA
ELEMENTS

,, l

530
LOAD A SECOND SET OF DATA ELEMENTS INTO AN INDEX REGISTER

| 532
%REPLICATE EACH ELEMENT OF THE SECOND SET OF DATA ELEMENTS
3 TO POPULATE THE INDEX REGISTER

!

540
INVOKE A VECTOR ADDITION INSTRUCTION TO COMBINE THE
TRANSLATION CONSTANT AND THE INDEX REGISTER

¥
550
INVOKE A VECTOR PERMUTE INSTRUCTION ON THE FIRST SET OF
DATA ELEMENTS AT THE BASE ADDRESS AND THE COMBINED
TRANSLATION CONSTANT AND INDEX REGISTER TO DECODE THE SECOND
SET OF DATA ELEMENTS INTO A SET OF SEGMENTS IN A DESTINATION
MEMORY

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 8 US 9,483,265 B2

140
R
133
Graphical User Interface
129 7
100 144
COMPUTER 1/0 INTERFACE
SYSTEM
143
141 142
MEMORY PROCESSOR
| 140-1 | 140-2
: 122 SPEECH | SPEECH
DE-QUANTIZATION | RECONITION RECOGNITION
: | MANAGER | MANAGER
ENGINE APPLICATION | PROCESS
147-2
| VECTOR
|....PROCESSOR |
145
COMM. INTERFACE

FIG. 6

U.S. Patent Nov. 1, 2016 Sheet 7 of 8 US 9,483,265 B2

700

710
ORDER DATA ELEMENTS IN LOOKUP TABLE IN CORRECT BYTE ORDER,
MOVE TABLE AND INDEXBASE INTO VECTOR REGISTERS

720
LOOKUP 32 FEATURES WORTH OF QUANTIZED VALUES WITH
POSTINCREMENT

!

730
LOOKUP_WITH_SHIFT (FIG. 8)

740
ACCUMULATE DCT PRODUCT

H

NO 7750
" LOOP FOUR TIMES? ™

YES

- 750
_LAST QUANTIZED VALUE? .

YES
FINISHED

FiG. 7

U.S. Patent Nov. 1, 2016 Sheet 8 of 8 US 9,483,265 B2

800

730
LOOKUP_WITH_SHIFT

820
COPY 2-BIT QUANTIZED VALUES (INDEXES) BY SHIFTING UPWARDS AND
THEN DOWN

830
ADD IDXBASE TO IDX

K
840
PERFORM LOOKUP FOR TWO DOUBLEWORDS

FIG. 8

US 9,483,265 B2

1
VECTORIZED LOOKUP OF FLOATING
POINT VALUES

FIELD OF INVENTION

The present disclosure relates to speech recognition. The
present disclosure also relates to processing of feature
vectors and, more specifically, to vector processing used to
improve speech recognition processing.

BACKGROUND

Processing capability of mobile devices has rapidly grown
in recent years. Such growth has opened up application areas
for speech and natural language processing technologies.
For example, voice search is one such application where
speech technology is making a significant impact by
enabling people to access the Internet conveniently from
mobile devices. Spoken queries are a natural medium for
searching the Mobile Web, especially in the common case
where typing on a device keyboard is impractical or incon-
venient. Voice search is now recognized as a core feature of
many mobile devices, and several related applications have
been developed.

Automatic speech recognition, allows individuals to use a
voice command or voice query to search the Internet and/or
electronic devices. A voice search is a search executed using
a spoken query or spoken utterance. Such voice searching
typically involves a device or processor converting a spoken
utterance into text, such as by converting spoken words,
numbers and characters into a text string or textual repre-
sentation of the spoken utterance. Several Automatic speech
recognition techniques require the processing of numerous
feature vectors of speech objects using Gaussian Mixture
Model (GMM), hidden Markov model (HMM), and Feature-
space Minimum Phone Error (fMPE) techniques.

Mobile platforms also have low available RAM for stor-
ing fMPE transformation matrices, so the floating point
number are converted to integers and highly compressed via
quantization to 2-bits per coeflicient. The fMPE techniques
are used for training (e.g., hidden Markov Model param-
eters) in speech recognition and other applications. The
fMPE transforms are applied to the feature vector (finger-
print) of each incoming frame of audio in order to make the
vector more useful for discriminating between similar
phones. When running automatic speech recognition (ASR)
on a mobile platform, floating point operations for FMPE
can take up to 10% of the central processing unit (CPU)
time. To parallelize matrix operations, one must parallelize
de-quantization (else the de-quantization step dominates the
computation time). This de-quantization requires a table
lookup for each value. The fMPE values are quantized to
2-bits, and each 2-bit pattern must be de-quantized to an
(arbitrary) 32-bit floating point value.

SUMMARY

Automatic Speech Recognition (ASR) on mobile plat-
forms and other platforms using feature vector techniques
has many challenges. The conventional approach for pro-
cessing feature vectors on a mobile phone involves numer-
ous operations including multiple step manipulating and
de-quantizing fMPE transformation matrices. Such
approach, however, suffers from placing a high processing
load on the CPU. On certain CPUs, the hardware provides
some single instruction multiple data (SIMD) 8-bit table
lookup operations, but de-quantizing fMPE transformation

10

20

40

45

55

2

matrices requires the ability to provide 32-bit floating point
values and in some applications 16-bit or 64-bit floating
point values.

The inventor has observed that on a particular processor
that a permute instruction (e.g., a VIBL instruction) can be
used to look up multiple 32 bit floating values in parallel
effectively de-quantizing stored 2-bit values by exploiting a
heretofore unknown capability of a particular family of
processors. It is understood that the techniques disclosed
herein, can be applied to other processors having similar
capabilities.

In one embodiment, a technique includes loading a first
set of data elements into a lookup table having a base
address, loading a first vector register with a translation
constant corresponding to the arrangement of the first set of
data elements, loading a second set of data elements into a
index register, invoking a vector addition instruction to
combine the translation constant and the index register and
invoking a vector permute instruction on the first set of data
elements at the base address and the combined translation
constant and index register to decode the second set of data
elements into a set of segments in a destination memory.
Such a technique can speed up FMPE processing by a factor
of four or more (i.e., 400 percent speed up) in some
embodiments. This results in reducing CPU processing time
from, for example, approximately about ten percent of total
available CPU time to approximately about three percent. In
some applications a seven percent speedup is considered
commercially significant.

In a further embodiment, loading a second set of data
elements into an index register further includes replicating
each element of the second set of data elements to populate
the index register. In other embodiments, the destination
memory includes a plurality of vector registers, the set of
segments include a representation of a floating point con-
stant, and the technique further includes invoking at least
one vector instruction operating on the floating point con-
stant. In one embodiment the vector instruction is a multi-
plication of a feature vector and row of an fMPE matrix and
the technique further includes reconstructing quantized val-
ues for performing fMPE operations to enable automatic
speech recognition.

One exemplary system includes a memory including one
or more instructions stored thereon that, when executed by
one or more processors, cause the one or more processors to
perform operations including loading a first set of data
elements into a lookup table having a base address, loading
a first vector register with a translation constant correspond-
ing to the arrangement of the first set of data elements,
loading a second set of data elements into a index register,
invoking a vector addition instruction to combine the trans-
lation constant and the index register and invoking a vector
permute instruction on the first set of data elements at the
base address and the combined translation constant and
index register to decode the second set of data elements into
a set of segments in a destination memory.

Yet other embodiments herein include software programs
to perform the steps and operations summarized above and
disclosed in detail below. One such embodiment comprises
a computer program product that has a computer-storage
medium (e.g., a non-transitory, tangible, computer-readable
media, disparately located or commonly located storage
media, computer storage media or medium, etc.) including
computer program logic encoded thereon that, when per-
formed in a computerized device having a processor and
corresponding memory, programs the processor to perform
the operations disclosed herein. Such arrangements are

US 9,483,265 B2

3

typically provided as software, firmware, microcode, code
data (e.g., data structures), etc., arranged or encoded on a
computer readable storage medium such as an optical
medium (e.g., CD-ROM), floppy disk, hard disk, one or
more ROM or RAM or PROM chips, an Application Spe-
cific Integrated Circuit (ASIC), a field-programmable gate
array (FPGA), and so on. The software or firmware or other
such configurations can be installed onto a computerized
device to cause the computerized device to perform the
techniques explained herein.

Accordingly, one particular embodiment of the present
disclosure is directed to a computer program product that
includes one or more non-transitory computer storage media
having instructions stored thereon for supporting operations
such as: loading a first set of data elements into a lookup
table having a base address, loading a first vector register
with a translation constant corresponding to the arrangement
of the first set of data elements, loading a second set of data
elements into an index register, invoking a vector addition
instruction to combine the translation constant and the index
register and invoking a vector permute instruction on the
first set of data elements at the base address and the
combined translation constant and index register to decode
the second set of data elements into a set of segments in a
destination memory.

The instructions, and method as described herein, when
carried out by a processor of a respective computer device,
cause the processor to perform the methods disclosed herein.
Other embodiments of the present disclosure include soft-
ware programs to perform any of the method embodiment
steps and operations summarized above and disclosed in
detail below.

Of course, the order of discussion of the different steps as
described herein has been presented for clarity sake. In
general, these steps can be performed in any suitable order.
Also, it is to be understood that each of the systems,
methods, apparatuses, etc. herein can be embodied strictly as
a software program, as a hybrid of software and hardware,
or as hardware alone such as within a processor, or within an
operating system or within a software application, or via a
non-software application such a person performing all or
part of the operations.

As discussed above, techniques herein are well suited for
use in software applications supporting speech recognition
applications. It should be noted, however, that embodiments
herein are not limited to use in such applications and that the
techniques discussed herein are well suited for other appli-
cations and data arrangements as well.

Additionally, although each of the different features,
techniques, configurations, etc. herein may be discussed in
different places of this disclosure, it is intended that each of
the concepts can be executed independently of each other or
in combination with each other. Accordingly, the present
invention can be embodied and viewed in many different
ways.

Note that this summary section herein does not specify
every embodiment and/or incrementally novel aspect of the
present disclosure or claimed invention. Instead, this sum-
mary only provides a preliminary discussion of different
embodiments and corresponding points of novelty over
conventional techniques. For additional details and/or pos-
sible perspectives of the invention and embodiments, the
reader is directed to the Detailed Description section and
corresponding figures of the present disclosure as further
discussed below.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and advantages
of the invention will be apparent from the following more

10

20

30

40

45

65

4

particular description of preferred embodiments herein as
illustrated in the accompanying drawings in which like
reference characters refer to the same parts throughout the
different views. The drawings are not necessarily to scale,
with emphasis instead being placed upon illustrating the
embodiments, principles and concepts.

FIG. 1 is a block diagram of a system for voice-enabled
search including a de-quantization engine according to
embodiments herein.

FIG. 2 is a flow diagram illustrating an example the
operation of the of de-quantization engine of FIG. 1.

FIG. 3 is a memory and register layouts of the de-
quantization engine of FIG. 1.

FIG. 4 is example pseudo-code for operation of the
de-quantization engine of FIG. 1.

FIG. 5 is a flowchart illustrating an example of a process
supporting the de-quantization engine of FIG. 1.

FIG. 6 is an example block diagram of a voice search
manager operating in a computer/network environment
according to embodiments herein.

FIG. 7 is a flowchart illustrating an example implemen-
tation of a dot product computation using the de-quantiza-
tion engine of FIG. 1.

FIG. 8 is a flowchart illustrating a LOOKUP_
WITH_SHIFT macro of the implementation of FIG. 7.

DETAILED DESCRIPTION

FMPE calculations are a fundamental part of speech
recognition processing. Language models are typically sta-
tistical models that can indicate a probability of any par-
ticular word sequence, prior to analyzing any spoken utter-
ance. Thus, the statistical language model has a likelihood of
saying a particular sequence of words. Such statistical
language models are conventionally trained by collecting a
huge corpus of phrases/utterances/word sequences (which
can be domain specific) and produce a very large feature
space. Techniques disclosed herein include systems and
methods for improving the performance of feature vector
processing on a mobile device with limited processing
resources. In particular these techniques speed up the de-
quantization process.

Referring now to FIG. 1, a block diagram illustrates a
general architecture of the system and process. Input to the
system is any spoken utterance 102 (e.g., a voice query,
notes, directions, replies, a voice message, etc.) issued by a
speaker 105, typically captured by a mobile device 137. This
speaker could be a caller of a mobile telephone, operator of
a desktop computer, driver operating a vehicle computer
system, user of a wireless tablet computer, etc. In response
to the mobile device 137 capturing the voice query, this
voice query can be transmitted to a computer system 100,
which can be a remote server or similar device. Alterna-
tively, mobile device 137 can include functionality to rec-
ognize text and to function as computer system 100.

The computer system 100 includes an automated speech
recognition (ASR) front end 110, an FMPE engine 120 and
an acoustic model language vocabulary 113 connected to an
ASR back end 130. The speech recognition process includes
receiving speech 102. This is converted to a waveform for
analysis by ASR front end 110. The waveform is then
analyzed by an ASR process. Such analysis can include
using an acoustic model in conjunction with a phrased-based
model (statistical language model), and one or more vocabu-
laries 113.

The ASR front end 110 produces feature vectors 111. The
feature vectors are used by the FMPE engine 120 as

US 9,483,265 B2

5

described below in further detail to produce enhanced fea-
ture vectors 121 which are used in conjunction with the
acoustic model language vocabulary 113 by the ASR back
end 130 to produce recognized speech 131 which in one
embodiment is provided in the form of text.

As part of the speech recognition process, the system 100
processes quantized feature vectors 111 using an {MPE
engine 120. The {MPE engine 120 includes a de-quantiza-
tion engine 122, a predetermined quantized fMPE matrix
117 and an fMPE transformer 124, which in one embodi-
ment comprises matrix multiply operations. The de-quanti-
zation engine 122 uses the predetermined quantized fMPE
matrix 117 to produce full (i.e., dequantized) fMPE values
119. The {MPE transformer 124 uses the full {MPE values
119 to produce the enhanced feature vectors 121, which are
integrated with an acoustic model to recognize the speech
102.

Functionality associated with de-quantization engine 122
will now be discussed via diagrams, pseudo-code and flow-
chart in FIG. 2 through FIG. 5. For purposes of the following
discussion, the de-quantization engine 122 or other appro-
priate entity performs steps in the flowcharts.

Referring now to FIG. 2, an exemplary de-quantization
engine 122 includes a vector processor 126 having storage
for different data types which can be operated on by the
vector processor 126. The storage includes a first set of data
elements 210 configured as a lookup table having a base
address 212, a set of index registers 222a-222n (collectively
referred to as index registers 222) and a translation constant
register 214 holding a translation constant corresponding to
the arrangement of the first set of data elements 210. The
storage further includes a set of segments 2524-252% in a
destination memory 250. In one embodiment, the data
elements 210 are dequantized fMPE values that retrieved
from the lookup table. In one embodiment, the set of index
registers 220 includes index registers 222 that include the
quantized values which are replicated, to be used in con-
junction with a lookup instruction as described below in
further detail.

In operation in a particular embodiment, the de-quanti-
zation engine 122 executes in firmware or software as
described above using the vector processor 126 to transform
a plurality 204 of 2-bit quantized data elements 202a-202m
into the a set of segments (e.g., 32-bit floating point values)
in destination memory 250. Here for example, the 2-bit
quantized data element 2024 q is replicated four times and
unpacked into four bytes of the 32-bit index register 222a
(bits 0 to 31 comprise the 32 bit index register. The dequan-
tization and transformation process primarily occurs within
the register of the vector processor 126 so that the results are
immediately available for further vector operations.

The storage can be in vector registers or memory accessed
by the vector processor 126. In one embodiment, an ARM v7
processor includes an ARM NEON™ SIMD instruction set
(also referred to as Advanced SIMD), and NEON has an
instruction VIBL. The VIBL instruction uses the first set of
data elements 210 as a lookup table the set of index registers
222 and the register holding a translation constant transla-
tion constant register 214 to generate the set of segments in
destination memory 250. In this embodiment, there are 16
8-bit “lanes” in each quadword register (i.e., 32 registers,
64-bits wide double words or 16 registers, 128-bits wide
quadwords). The instruction translates the value in each
(8-bit) lane using a lookup table included in a sequence of
contiguous NEON registers. Other processor, for example,
Intel x86 based AVX instruction set includes lookup table
instructions which may be used with similar techniques. It is

10

15

20

25

30

40

45

6

noted that the size of the translation constant register 214,
the lookup table of data elements 210, the replication factor
and the bit lengths of the various registers as well as the size
of each of plurality 204 of 2-bit quantized data elements can
vary according to the hardware features of a particular
vector processor 126 selected for the de-quantization engine
122.

Referring now to FIG. 3, the operation of the de-quanti-
zation engine 122 is shown for a single 2-bit quantized
fMPE value 2024 to be de-quantized. An index register 222a
includes replicated values in all four lanes. A first vector
register is configured with a translation constant and the base
address.

In this example, one 32-bit lane of the index register 222a
would have the binary value:
00000011000000110000001100000011. Other 32-bit lanes
would have similar replicated bit patterns for other {MPE
values to be de-quantized. Next a base address register is
added to the quadword. This base address register is con-
structed to be 4 32-bit addresses (quadruplicated), and this
32-bit address is chosen so as to point at the start of a register
file (base address) which will contain byte values, arranged
so that the table lookups will result in the correct de-
quantization. The result of the vector addition operation 422
is a combined translation constant and index register 216
(also referred to as a final index 216).

Thus, when the VTBL instruction is invoked with the
combined translation constant and the index register 216 and
the base address as operands configured as described above.
Execution of the single VTBL instruction effectively
decodes the 2-bit quantized TMPE value 202q into 32-bit
floating point segment of four bytes. Here, the 2-bit quan-
tized fMPE data element 2024 is decoded into the 32-bit
floating point value {d, . . . dgy 252a as part of a set of
segments in a destination memory 250. It is understood that
multiple quantized fMPE values can be decoded using a
single VIBL instruction (or equivalent) depending on the
size and quantity of vector registers available.

Referring now to FIG. 4, example pseudo-code is shown
for an example embodiment as described herein. The
example pseudo-code includes an initial setup section 400
lines 1-3, a section to load and de-quantized values 410 lines
4 and 5, and 6, and a transformation section 420 including
line 7. In one embodiment, some of the operations are
repeated multiple times to accommodate the architecture of
a variety of processors (e.g., a processor may have multiple
lanes. On some processors the instructions can be 8, 16, 32
or 64 bits wide. In one embodiment the load operation
rearranges the byte to operate with the corresponding lookup
operation.

In section 400, initial one time setup operations are
executed for a predetermined lookup table and correspond-
ing translation constant. If a particular vector processor has
sufficient space the lookup table can be moved into registers
or memory which allows faster access to the data elements
by executing the instruction in line 3.

In section 410, line 4, the quantized values, for example,
2 bit values are loaded into an index register. It is understood
that smaller or larger quantized value can be used. A shift
and mask operation is used in certain embodiments to
retrieve the 2-bit quantized values after replication before
being added to the translation constant in line 5.

In line 6, the permute (vector table lookup) instruction
may be repeated multiple times in certain embodiments
where the permute instruction operates over multiple lanes
(i.e., subsets of the vector processor memory/register sets).

US 9,483,265 B2

7

As seen in the transformation section 420, instruction 7
represents invoking a vector instruction operating on float-
ing point constant, for example, performing a vector multi-
plication instruction to multiply the feature vectors with a
row of an fMPE matrix to produce enhanced feature vectors
to enable automatic speech recognition in conjunction with
Gaussian Mixture Model input techniques. Flow charts 700
and 800 shown below in FIGS. 7 and 8 describe portions of
source code for the operation of an exemplary de-quantiza-
tion engine 122 as implemented on a NEON SIMD instruc-
tion set on an ARM® 7 processor.

Now describing embodiments more specifically, FIG. 5 is
a flow chart illustrating embodiments disclosed herein. In
step 510, a first set of data elements is loaded into a lookup
table having a base address. In one embodiment, the first set
of data elements corresponds to a set of 32-bit floating point
values to be used in FMPE operations to support speech
recognition functionality. In another embodiment, the
lookup table is stored in a plurality of vector registers.

In step 520, a first vector register is loaded with a
translation constant corresponding to the arrangement of the
first set of data elements. The translation constant represents
a mapping of the first set of data elements and is a function
of the vector processor 126 register organization and the
desired result of the de-quantization process. In one embodi-
ment, the translation constant effectively selects every fourth
byte of a floating point value.

In step 530, a second set of data elements is loaded into
an index register. In one embodiment, the set of data
elements correspond to quantized fMPE transformation
matrices which need to be expanded to floating point values.
In one embodiment, the second set of data elements repre-
sent quantized values of a speech feature vector. In one
particular processor, each element of the second set of data
elements is replicated to populate the index register. On an
exemplary vector processor, several index registers supply
values for several lanes of data effectively allowing for the
de-quantization of several elements of an fMPE transforma-
tion matrix simultaneously. In some embodiments and as
shown in FIG. 2, each element of the second set of data
elements is replicated to populate the index register as
shown in step 532.

In step 540, a vector addition instruction is invoked to
combine the translation constant and the index register. In
one embodiment, this step sets up a combined translation
constant and index register to be used in the subsequent
permute operation.

In step 550, a vector permute instruction is invoked on the
first set of data elements at the base address and the
combined translation constant and index register to decode
the second set of data elements into a set of segments in a
destination memory. Depending on a particular vector pro-
cessor used, the set of segments are decoded from non-
consecutive data elements in the lookup table. In one
embodiment a single SIMD instruction vector permute
instruction is used.

In another embodiment the destination memory is a
plurality of vector registers. In yet another embodiment, the
set of segments represent floating point constants and at least
one vector instruction can be invoked which operates on the
floating point constants. This instruction can be multiplica-
tion of IMPE values for performing fMPE operations to
enable automatic speech recognition. In one particular
embodiment, the permute instruction is a single SIMD
instruction. On an ARM processor, the single SIMD instruc-
tion vector permute instruction is a TBL instruction in a
NEON instruction set. This type of operation when executed

10

15

20

25

30

35

40

45

50

55

60

65

8

with multiple instructions without a de-quantization engine
is sometimes referred to as “swizzling.”

FIG. 6 illustrates an example block diagram of a speech
recognition system 140 including the de-quantization engine
122 operating in a computer/network environment accord-
ing to embodiments herein. In summary, FIG. 6 shows
computer system 100 displaying a graphical user interface
133 that provides a speech recognition interface. Computer
system 100 can function as a client device such as a cell
phone or other mobile device 137, or as a server that receives
input from a given mobile device. Thus, computer system
100 can be—or connect to—a remote server for processing
assistance.

In different embodiments, computer system 100 may be
any of various types of devices, including, but not limited to,
a cell phone, a personal computer system, desktop computer,
laptop, notebook, or netbook computer, tablet computer,
mainframe computer system, handheld computer, worksta-
tion, network computer, application server, storage device, a
consumer electronics device such as a camera, camcorder,
set top box, mobile device, tablet video game console,
handheld video game device, or in general any type of
computing or electronic device.

Computer system 100 is shown connected to display
monitor 129 for displaying a graphical user interface 133 for
a user 136 to operate using input devices 135. Repository
138 can optionally be used for storing data files and content
both before and after processing. Input devices 135 can
include one or more devices such as a keyboard, computer
mouse, microphone, etc. As shown, computer system 100 of
the present example includes an interconnect 143 that
couples a memory system 141, a processor 142, /O inter-
face 144, and a communications interface 145. I/O interface
144 provides connectivity to peripheral devices such as
input devices 135 including a computer mouse, a keyboard,
a selection tool to move a cursor, display screen, etc.
Communications interface 145 enables a speech recognition
manager 140-1 of computer system 100 to communicate
over a network and, if necessary, retrieve any data required
to create views, process content, communicate with a user,
etc. according to embodiments herein.

As shown, memory system 141 is encoded with speech
recognition manager 140-1 that supports functionality as
discussed above and as discussed further below. Speech
recognition manager 140-1 (and/or other resources as
described herein) can be embodied as software code such as
data and/or logic instructions that support processing func-
tionality according to different embodiments described
herein.

During operation of one embodiment, processor 142
accesses memory system 141 via the use of interconnect 143
in order to launch, run, execute, interpret or otherwise
perform the logic instructions of the speech recognition
manager 140-1. Execution of the speech recognition man-
ager 140-1 produces processing functionality in speech
recognition manager process 140-2. In other words, the
speech recognition manager process 140-2 represents one or
more portions of the speech recognition manager 140 per-
forming within or upon the processor 142 in the computer
system 100. During execution of the speech recognition
manager process, the de-quantization engine 122 executes to
process TMPE transformation matrices.

It should be noted that, in addition to the speech recog-
nition manager process 140-2 that carries out method opera-
tions as discussed herein, other embodiments herein include
the speech recognition manager 140-1 itself (i.e., the un-
executed or non-performing logic instructions and/or data).

US 9,483,265 B2

9

The speech recognition manager 140-1 and the de-quanti-
zation engine 122 may be stored on a non-transitory, tan-
gible computer-readable storage medium including com-
puter readable storage media such as floppy disk, hard disk,
optical medium, etc. According to other embodiments, the
de-quantization engine 122 can also be stored in a memory
type system such as in firmware, read only memory (ROM),
or, as in this example, as executable code within the memory
system 141.

Now referring to FIG. 7, a flow chart 700 illustrates
embodiments as implemented on an Arm v7 processor with
a NEON Instruction set, as disclosed herein. In step 710, a
set of data elements in a lookup table is ordered to facilitate
subsequent vector operations by reordering an input lookup
table of four 32 bit values into 16 non-consecutive bytes. In
one embodiment, the lookup table is setup using a VIBL
instruction in conjunction with the translation constant. In
this embodiment the data elements corresponds to a set of
32-bit floating point values in calculating a dot product. Also
in step 710, the lookup table and the index base are moved
into vector registers.

In step 720, 32 quantized features values are looked up. In
one implementation a combination of vector load “VLD”
and vector extract “VEXT” byte instructions are used to
duplicate each quantized value eight times.

In step 730, a LOOKUP_WITH_SHIFT macro is called
shift source lanes and performs the lookup which effectively
dequantizes the 2-bit index. In step 740, the dot product is
accumulated using a 32-bit vector multiply “VMLA”
instruction. On the first entry into the 730 to 750 loop a
32-bit “VMUL” instruction is used to zero the accumulator.
It is understood that the 730 to 750 loop can be “unrolled”
to eliminate the overhead of test and branch instructions.

At step 750 it is determined whether the
LOOKUP_WITH_SHIFT macro has been called four times.
If the LOOKUP_WITH_SHIFT routine has not been called
four times, processing continues at step 730 with the next set
of quantized values. If the LOOKUP_WITH_SHIFT routine
has been called four times, processing continues at step 750
where is determined whether all of the quantized values
have been processed (i.e., dequantized). If all of the quan-
tized values have been processed the process is finished,
otherwise processing continues at step 720.

Now referring to FIG. 8, a flow chart 800 illustrates an
implementation of the LOOKUP_WITH_SHIFT macro
using the Neon instruction set. The LOOKUP_
WITH_SHIFT macro is called with an indication of how
many bits to shift source lanes to select the two bit indices
to be dequantized. In step 820, 2-bit quantized values
(indices) are copied by shifting upwards and then down
again using vector shift operations “vshl” and “vshr.” The
index base is added to the index using a vector add opera-
tion. In step 840, a lookup is performed. In this implemen-
tation, the vector table lookup operation “vtbl” is performed
twice for each of two doublewords. This routine quickly
looks up 32-bit values using an 8-bit vtbl operator. The
routine implemented as a macro in one embodiment encodes
the lookup in only five instructions.

In addition to these embodiments, it should also be noted
that other embodiments herein include the execution of the
de-quantization engine 122. Thus, those skilled in the art
will understand that the computer system 100 can include
other processes and/or software and hardware components,
such as an operating system that controls allocation and use
of hardware resources, or multiple processors. It is under-
stood that the techniques and system disclosed herein can be

10

15

20

25

30

35

40

45

50

55

60

65

10

applied in fields other that speech recognition where data
manipulation of quantized values is required.

In other embodiments, the techniques disclosed above can
be used for decoding operations in addition to de-quantiza-
tion of quantized values. In these embodiments, the trans-
lation constant can be varied to select different arrangements
for the lookup table and multiple lookup tables can be used.
In one embodiment, a bytewise integer lookup operation
effectively performs a floating point or a multiple byte
lookup.

Those skilled in the art will also understand that there can
be many variations made to the operations of the techniques
explained above while still achieving the same objectives of
the invention. Such variations are intended to be covered by
the scope of this invention. As such, the foregoing descrip-
tions of embodiments of the invention are not intended to be
limiting. Rather, any limitations to embodiments of the
invention are presented in the following claims.

The invention claimed is:

1. A computer-implemented method for performing auto-
matic speech recognition, the method comprising, using at
least one processor programmed to perform:

loading a first set of data elements into a lookup table

having a base address;

loading a vector register with a translation constant cor-

responding to an arrangement of the first set of data
elements;

loading a second set of data elements into an index

register;

invoking a vector addition instruction to combine the

translation constant and the index register;

invoking a vector permute instruction on the first set of

data elements at the base address and the combined
translation constant and index register to decode the
second set of data elements into a set of segments in a
destination memory;

reconstructing a plurality of quantized values into a

plurality of dequantized values in parallel;

producing, based on the plurality of dequantized values, a

plurality of enhanced feature vectors; and

outputting the plurality of enhanced feature vectors to a

speech recognizer that performs automatic speech rec-
ognition based on the plurality of enhanced feature
vectors.

2. The computer-implemented method of claim 1,
wherein the lookup table comprises a plurality of vector
registers.

3. The computer-implemented method of claim 1,
wherein the destination memory comprises a plurality of
vector registers.

4. The computer-implemented method of claim 3,
wherein the set of segments comprise a representation of a
floating point constant; and

further comprising invoking at least one vector instruction

operating on the floating point constant.

5. The computer-implemented method of claim 4,
wherein the at least one vector instruction is a multiplication
of a feature vector and row of an fMPE matrix.

6. The computer-implemented method of claim 1,
wherein the set of segments are decoded from non-consecu-
tive data elements in the lookup table.

7. The computer-implemented method of claim 1,
wherein the permute instruction comprises a single SIMD
instruction.

8. The computer-implemented method of claim 7,
wherein the single SIMD instruction vector permute instruc-
tion comprises a TBL instruction in a NEON instruction set.

US 9,483,265 B2

11

9. The computer-implemented method of claim 1,
wherein the second set of data elements represent quantized
values of a speech feature vector.
10. The computer-implemented method of claim 1,
wherein loading a second set of data elements into an index
register further comprises replicating each element of the
second set of data elements to populate the index register.
11. A system for performing automatic speech recogni-
tion, the system comprising:
one or more processors;
a memory including one or more instructions stored
thereon that, when executed by the one or more pro-
cessors, cause the one or more processors to perform
operations comprising:
loading a first set of data elements into a lookup table
having a base address;

loading a first vector register with a translation constant
corresponding to an arrangement of the first set of
data elements;

loading a second set of data elements into an index
register;

invoking a vector addition instruction to combine the
translation constant and the index register;

invoking a vector permute instruction on the first set of
data elements at the base address and the combined
translation constant and index register to decode the
second set of data elements into a set of segments in
a destination memory;

reconstructing a plurality of quantized values into a
plurality of dequantized values in parallel;

producing, based on the plurality of dequantized val-
ues, a plurality of enhanced feature vectors; and

outputting the plurality of enhanced feature vectors to
a speech recognizer that performs automatic speech
recognition based on the plurality of enhanced fea-
ture vectors.

12. The system of claim 11, wherein the lookup table
comprises a plurality of vector registers; and

wherein the destination memory comprises a plurality of
vector registers.

13. The system of claim 12, wherein the set of segments

comprise a representation of a floating point constant; and
further comprising invoking at least one vector instruction
operating on the floating point constant.

14. The system of claim 13, wherein the at least one vector
instruction is a multiplication of a feature vector and a row
of an fMPE matrix.

10

20

25

30

40

45

12

15. The system of claim 11, wherein the set of segments
are decoded from non-consecutive data elements in the
lookup table.

16. The system of claim 15, wherein the permute instruc-
tion comprises a single SIMD instruction.

17. The system of claim 11, wherein the single SIMD
instruction vector permute instruction comprises a TBL
instruction in a NEON instruction set.

18. The system of claim 11, wherein the second set of data
elements represents quantized values of a speech feature
vector.

19. The system of claim 11, wherein loading a second set
of data elements into an index register further comprises
replicating each element of the second set of data elements
to populate the index register.

20. A computer program product including a non-transi-
tory computer-storage medium having instructions stored
thereon for processing data information for performing
automatic speech recognition, such that the instructions,
when carried out by a processing device, cause the process-
ing device to perform:

loading a first set of data elements into a lookup table

having a base address;

loading a first vector register with a translation constant

corresponding to an arrangement of the first set of data
elements;

loading a second set of data elements into an index

register;

invoking a vector addition instruction to combine the

translation constant and the index register;

invoking a vector permute instruction on the first set of

data elements at the base address and the combined
translation constant and index register to decode the
second set of data elements into a set of segments in a
destination memory;

reconstructing a plurality of quantized values into a

plurality of dequantized values in parallel;

producing, based on the plurality of dequantized values, a

plurality of enhanced feature vectors; and

outputting the plurality of enhanced feature vectors to a

speech recognizer that performs automatic speech rec-
ognition based on the plurality of enhanced feature
vectors.

